Evaluation of Tyrosine Kinase Inhibitor Combinations for Glioblastoma Therapy
نویسندگان
چکیده
Glioblastoma multiforme (GBM) is the most common intracranial cancer but despite recent advances in therapy the overall survival remains about 20 months. Whole genome exon sequencing studies implicate mutations in the receptor tyrosine kinase pathways (RTK) for driving tumor growth in over 80% of GBMs. In spite of various RTKs being mutated or altered in the majority of GBMs, clinical studies have not been able to demonstrate efficacy of molecular targeted therapies using tyrosine kinase inhibitors in GBMs. Activation of multiple downstream signaling pathways has been implicated as a possible means by which inhibition of a single RTK has been ineffective in GBM. In this study, we sought a combination of approved drugs that would inhibit in vitro and in vivo growth of GBM oncospheres. A combination consisting of gefitinib and sunitinib acted synergistically in inhibiting growth of GBM oncospheres in vitro. Sunitinib was the only RTK inhibitor that could induce apoptosis in GBM cells. However, the in vivo efficacy testing of the gefitinib and sunitinib combination in an EGFR amplified/PTEN wild type GBM xenograft model revealed that gefitinib alone could significantly improve survival in animals whereas sunitinib did not show any survival benefit. Subsequent testing of the same drug combination in a different syngeneic glioma model that lacked EGFR amplification but was more susceptible to sunitinib in vitro demonstrated no survival benefit when treated with gefitinib or sunitinib or the gefitinib and sunitinib combination. Although a modest survival benefit was obtained in one of two animal models with EGFR amplification due to gefitinib alone, the addition of sunitinib, to test our best in vitro combination therapy, did not translate to any additional in vivo benefit. Improved targeted therapies, with drug properties favorable to intracranial tumors, are likely required to form effective drug combinations for GBM.
منابع مشابه
Lipid Nanocapsules for Imatinib Delivery: Design, Optimization and Evaluation of Anticancer Activity Against Melanoma Cell Line
Lipid nanocapsules (LNCs) represent a stable, biocompatible and worthwhile drug delivery system, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. Imatinib, a potent tyrosine kinase inhibitor, has revolutionized the therapy of malignancies resulting from abnormal tyrosine kinase activity. However, its Clinical effectiveness in cancer treatment is h...
متن کاملThe effects of ponatinib, a multi-targeted tyrosine kinase inhibitor, against human U87 malignant glioblastoma cells
Glioblastoma is one of the most common malignant tumors in the nervous system in both adult and pediatric patients. Studies suggest that abnormal activation of receptor tyrosine kinases contributes to pathological development of glioblastoma. However, current therapies targeting tyrosine kinase receptors have poor therapeutic outcomes. Here, we examined anticancer effects of ponatinib, a multi-...
متن کاملAZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients.
Using MRI techniques, we show here that normalization of tumor vessels in recurrent glioblastoma patients by daily administration of AZD2171-an oral tyrosine kinase inhibitor of VEGF receptors-has rapid onset, is prolonged but reversible, and has the significant clinical benefit of alleviating edema. Reversal of normalization began by 28 days, though some features persisted for as long as four ...
متن کاملIncreased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion.
The abnormal vasculature of the tumor microenvironment supports progression and resistance to treatment. Judicious application of antiangiogenic therapy may normalize the structure and function of the tumor vasculature, promoting improved blood perfusion. However, direct clinical evidence is lacking for improvements in blood perfusion after antiangiogenic therapy. In this study, we used MRI to ...
متن کاملEnhancement of radiation sensitivity, delay of proliferative recovery after radiation and abrogation of MAPK (p44/42) signaling by imatinib in glioblastoma cells.
Glioblastomas are intrinsically resistant to conventional radiation therapy. The present study investigated the possibility that the tyrosine kinase inhibitor, imatinib, could enhance radiation sensitivity and influence proliferative recovery after irradiation in glioblastoma cells. Radiosensitivity was evaluated by clonogenic survival; apoptotic cell death was evaluated using flow cytometric a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012